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Abstract 

The performance of the Fast Fourier Transform computation 
plays a crucial role in the overall operation of OFDM modems. 
A VLSI architecture realizing the FFT has to perform in real 
time, adapt to various data rates and accommodate support for 
power dissipation requirements. This paper presents a VLSI 
architecture for real time FFT processing. The design involves 
four (4) radix-4 and one (1) radix-2 processing elements with 
complex multipliers and can be configured in real time to 
accommodate FFT computations of length 16, 32, 64, 128 and 
256. For further speeding up the entire algorithm, the design can 
include a technique for parallel accessing the memory banks of 
each processing element. The validity and the effi ciency of the 
architecture have been shown by an example implementation on 
FPGAs with throughput: each 256-length FFT at 2.48 usec. 

1. Introduction 
The spectral analysis of discrete signals plays an important role 
both in Digital Signal Processing and in Telecommunication 
Applications. The Fast Fourier Transform (FFT) Algorithm, as 
introduced by Cooley and Tukey [1], is an important 
improvement on the Discrete Fourier Transform (DFT) 
Algorithm [2] due to the achievement of significantly lower 
computational complexity. Among other technological 
advancements, the FFT has enabled the development of real 
time, high-speed applications, such as the Orthogonal 
Frequency Division Multiplexing (OFDM) Modems [24], [25]. 
Lately, OFDM systems have been designed to sustain a 
transmitting rate of 50 Mwords/sec [13]. 
 
The OFDM modems exploit the perpendicularity of the sinus 
and co-sinus as means to generate and transmit a set of symbols 
through the channel. This procedure requires real time Inverse 
FFT and FFT processing during the modulation and 
demodulation of the signal respectively. The performance 
required by the FFT processing demands either a single 
processor driven to a very high clock frequency (O(logN) 
multiplied by the sampling frequency)[12], or alternatively the 
implementation of an Application Specific Integrated Circuit 
(ASIC) solution utilizing parallel processing and bit-pipelining 
techniques[14]. Both solutions have to meet requirements that 
are extremely demanding in terms of throughput and low power 
consumption, especially when the applications involve mobile 
communications and/or battery-powered systems. Moreover, the 
need for variable data rate in OFDM modems imposes the 
requirement for computations of various FFT sizes. To 
accomplish this task, researchers are concerned with the issue of 
reconfiguring the FFT architecture during subsequent frames (in 
real time)[13]. In most cases, the solution of an off-the-shelf 
high-speed processor is shown to be inadequate with respect to 

the variations of the processing speed requirements and power 
consumption ([15], [16], [17], [18], [19], [20], [21], [22], [23]).  
 
This paper presents a FFT architecture with four (4) radix-4 
processing elements and one (1) radix-2 processing element. 
Each processing element includes a complex multiplier and uses 
a word-serial access to each processing element’s memory. 
Each processing element realizes an FFT stage. The radix-4 
computation has been chosen because of the requirement of 
minimizing the round-trip delay of frames in the 
telecommunication systems using OFDM [13]. The proposed 
FFT architecture can be configured in real time, in order to 
perform computations of 16, 32, 64, 128 or 256 points. Also, 
this paper considers a technique for word parallel accesses to 
the memory banks of each processing element, which if it is 
applied, it will improve further the performance of each 
application. 
 
The FFT architecture can sustain a throughput equal to the 
length of the FFT (N words) multiplied by the register access 
time provided by the VLSI technology. An example 
implementation on Xi linx or Altera Field Programmable Gate 
Arrays (FPGAs) results in a throughput of 256-points FFT at 
2.48 us This result provides an enhanced throughput comparing 
to the results in the literature [9], [11], [12], [15], [16], [17], 
[18], [19], [20], [21], [22], [23]. This performance can be 
further improved by parallelizing the access to the memory, as 
mentioned above. Moreover, the design is power efficient by 
using the lowest possible frequency and the minimal subset of 
processing elements and memory blocks to accomplish the FFT 
computations.  
  
The paper is organized as follows: The following section 
presents the problem definition, including relevant work 
regarding FFT architectures. Section 3 describes the proposed 
FFT architecture, including the organization of the main blocks 
and the interconnection between them, the memory 
management and the overall control unit. Section 4 analyzes the 
power consumption of the FFT architecture and adapts 
techniques for power dissipation reduction. Section 5 describes 
an effi cient technique for parallelizing the access to the memory 
banks of the FFT architecture to enhance the memory to each 
processing element throughput. Finally, Section 6 concludes the 
paper. 

2. Problem Definition  
This Section presents the FFT computation and its application in 
OFDM systems and related results with respect to the FFT 
performance. 
 
The FFT in OFDM systems: The OFDM requires a modulation 
of the 2N points (the 2N points form a symbol) using an IFFT 
calculation at the transmitter side (Tx). The corresponding 



demodulation at the receiver side (Rx) involves an FFT 
calculation of the 2N words of the symbol. 
 
As shown in [1] the Decimation In Time FFT (DIT FFT) X[k] 
of a sequence x[n] is computed by successively decomposing 
the input signal in odd and even samples and recursively 
applying the DFT algorithm to the resulting sequences. This can 
be illustrated as follows: 
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where: )/2exp( NjWN πππππππππππππππππππππππππππππππππππππππππππππππππππππππππ−= . Exploiting the inherent 

symmetry of the twiddle factors and recursively applying the 
above formula, we obtain the elementary “butterfly” operation 
used in the calculation of the FFT. 
 
The FFT length and the throughput depend on the OFDM 
application. Another aspect related to OFDM systems is the 
variation of the size of the FFT due to variable bit rates. The 
modem changes the combination of these two parameters 
dynamically. The principles behind the decisions for varying the 
parameters are different among OFDM modems. For example, 
the bit rate should be lowered when the channel conditions 
deteriorate during a link-up, or increased when channel 
conditions are better. Also various modem applications impose 
limits on the power consumption. For instance, mobile 
transceivers require both variable bit rates and low power 
operation. 
 
Therefore, the most efficient solution is to process the data at 
the transmitting (receiving) rate. This implies that the 
architecture should be organized in a parallel mode and it 
introduces latency in FFT lengths proportional to the number of 
processing elements. This latency constitutes an additional 
design problem that should be addressed. More specifically 
another issue regarding the FFT implementation in OFDM 
modems is the round-trip delay of symbols. This delay has to be 
kept minimal, a fact that leads to solutions of processing 
elements with radix computation higher than 2. 
 
Related Work: The Fast Fourier Transform (FFT) has been 
presented in [1] and details of design and applications can be 
found in [2]. A variety of VLSI architectures is presented in [3] 
optimized with respect to the AT2 bound ((Area 
complexity)*(Time complexity)2). [4] Refers to the power 
dissipation and complexity of a pipelined parallel FFT 
architecture, showing that parallelizing the processing units 
results in a significant reduction of the power consumption. A 
different multiplication scheme is presented in [5], applied to a 
single multiplier CMOS based DSP processors, in order to 
implement a low-power FIR filt er. The multiplier can be used 
with slight alterations to perform the multiplications in the FFT 
algorithm as well. [10] Presents the problem of power 
estimation in VLSI architectures. It also introduces probabilistic 
techniques to estimate power dissipation and presents a survey 
on several power estimation techniques. [6] Presents how the 
perfect shuffle interconnection pattern can be used in order to 
perform FFT transforms. Several methods for performing FFT 
computations are presented in [7]. A variety of algorithms for 
pipeline and parallel 
 

Number of points in data 
frame 

Radix-4 Stages needed 

16 2 
32 2 

64 3 
128 3 
256 4 

Table 1: PE utilization for different lengths of frames 

pipeline processors are examined, with respect to VLSI 
implementation. [8] Presents among others a set of algebraic 
tools  
that can be used to describe processor networks in terms of their 
patterns of connections. A radix-22 algorithm is presented in [9], 
which combines the radix-2 butterfly structure and the radix-4 
multiplicative complexity. A low-power FFT architecture is 
presented in [11]. Asynchronous circuit design and multirate 
signal processing are combined in order to produce a globally 
shared result algorithm. [12] Presents a DSP architecture for 
high-speed FFT transforms proposing a different flow of the 
computations for the butterfly operations. [13] Presents an 
OFDM modem and the benefits of architecture flexibility,  
adaptability and reconfigurability. 
 
This paper presents a parallel FFT architecture, which is 
reconfigurable with respect to the size of the FFT problem, the 
clock speed of execution and the number of memory modules 
used at each stage. The architecture is optimized for use in 
Orthogonal Frequency Division Multiplexing Modems 
(OFDM). It has incorporated several features of the above 
designs while it introduces reconfiguration of a high-speed 
architecture along with a variable number of memory modules. 
It also considers the power efficiency of the FFT architecture. 
The architecture’s description follows in the next Section.  

3. Architecture 
This Section describes the overall architecture and the details of 
the individual blocks, namely the processing elements, the 
interconnection and the control. The FFT-architecture performs 
FFT or IFFT computation of 2n points, 4≤n≤8. This is 
accomplished by implementing split radix decimation in 
frequency (DIF) algorithm. The collection of the 2n data words 
are regarded as one frame of data which, for the specific 
application in OFDM modems, correspond to the length of one 
OFDM symbol. 
 
The FFT architecture consists of five (5) Processing Elements 
(PEs): Four (4) radix-4 PEs and one (1) radix-2 PE, as shown in 
Figure 1. Each PE performs a single stage of the FFT 
computation within the time required to input one data frame. 
The FFT architecture can be configured in real time, in order to 
perform FFT computations of 16, 32, 64, 128 or 256 points. 
These computations require a subset of four (4) radix-4 PEs plus 
optionally one (1) radix-2 PE depending on the number of the 
FFT points, as shown in Table 1. 
 
The FFT architecture has been designed to process consecutive 
frames of either the same or different lengths. An external 
arbiter must signal a change in the frame size to the architecture. 
 



 
Figure 1: FFT organization 

3.1 Processing Element Description 
This section describes the functionality of the blocks that 
support each processing element (PE). The following 
paragraphs define the interfaces of the blocks within the PEs, as 
well as the interfaces among the PEs. 

Radix-4 
A radix-4 processing element performs one stage of radix-4 
butterfly computations to the data. Each radix-4 PE consists of 
the following blocks (refer to Figure 2): 
 
RAM: This block is used to store the input data to the 
processing element. The preceding butterfly stage supplies the 
write addresses to the radix-4 PE. The read addresses are 
generated within the radix-4 PE (as described below). The 
memory block is organized internally with two memory banks. 
Each bank can store one (1) frame of data. The first bank can be 
considered as the working bank for the FFT core. The second 
bank is used to store the incoming input data. The two memory 
banks switch roles at the beginning of each incoming frame. 
 
Address Generators: There are two address generators. The first 
is used for supplying read addresses to the RAM block internal 
to the PE. The second is used for supplying write addresses for 
the data that exit the PE. The addressing scheme is the same for 
both Address Generators. Each radix-4 PE uses a distinct 
addressing scheme depending on the FFT stage realized by the 
PE. 
 
Twiddle (W) Generator: A Look-Up-Table (LUT) contains the 
max(N) roots of unity, where max(N) is the maximum size of 
FFT that is supported by the architecture (256). The Twiddle 
Address Generator is a simple N-counter-based architecture. At 
each data cycle the Twiddle Generator fetches the appropriate 
twiddle factor. 
 
Butterfly Core: This block performs the radix-4 FFT butterfly 
computation. The N input data are read sequentially from the 
RAM block. Each set of four consecutive input data forms the 
input to each radix-4 calculation. The corresponding twiddle 
factors are also fetched from the Twiddle Generator. Four (4) 
complex accumulators are used to process the input data in 
parallel. Each accumulator-process involves the add-subtract of 
the four data, as these operations are defined by the radix-4 data 
flow. A single complex multiplier unit operates on the four (4) 
accumulated results and the twiddle factors in a pipeline 
fashion. The resulting data are written sequentially to the RAM 
block of the following (FFT) PE. 
 

 

Figure 2: Radix-4 & Radix-2 processing element internal 
units 

 
Each radix-4 processing element in the reconfigurable FFT 
pipeline has to be provided the length of the data frame it is 
processing by the Overall Control Unit (OCU). With this 
information the addressing scheme used by the address 
generator block and the twiddle factor generator block is 
changed. This is accomplished by selecting the proper 
permutation of the binary counter that all three generator blocks 
realize. 

Radix-2 
The radix-2 PE applies one stage of radix-2 butterfly 
computations to its data. It is used when the size of the frame to 
be processed is 32 or 128 points. The radix-2 PE is realized as a 
simplified radix-4 PE (Figure 2). The Butterfly Core is replaced 
with the simpler radix-2 butterfly network, consisting of two (2) 
complex adders/subtractors and one (1) complex multiplier. 
This circuit though is optimized further. In the split radix 128 
and 32 point FFT computation, the twiddle factors for all radix-
2 butterflies have the constant value of (1+0j). Plugging into the 
radix-2 butterfly equations we obtain: 
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Consequently, the complex multiplier (in the butterfly core) and 
the twiddle generator blocks are omitted. 

3.2 Interconnection 
The architecture performs FFT or IFFT computation by 
implementing split radix decimation in frequency (DIF) 
algorithm. The pipeline consists of four (4) consecutive radix-4 
PEs and a single PE of radix-2. The input to the FFT is always 
directed to the first radix-4 PE of the pipeline. With the use of a 
broadcast bus the address and data output of each PE can be 
diverted to the bus or to the following PE using 
multiplexers/demultiplexers (In our implementation we have 
been using broadcast lines). The bus is used in two ways. First, 
for data that do not need to be processed by all PEs of the 
pipeline and the bus performs as a bypass to the exit of the FFT 
architecture. Second, it is used for processing the split-radix 
cases of frame lengths, namely the 32 and 128 point, in which 
case output from any previous PE (radix-4) in the pipeline can 
be diverted to the input of the radix-2 PE for processing. The 
output from the last PE (radix-2) is stored into a RAM block. It 
consists of two banks of memories and utilizes the bank 
switching mechanism described above. In this block, data are 
buffered in order to perform the bit-reversal permutation. 

 
An additional external input signal specifies the beginning of a 
data frame. This signal is propagated to each successive PE of 
the pipeline, and allows proper bank switching functionality. 
The architecture provides this signal as an output to mark the 
start of a data frame at the output. 
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3.3 Overall Control Unit 
The pipeline Overall Control Unit (OCU) has to provide signals 
that control: first each multiplexer’s select port for output on the 
broadcast bus. Second, it supplies the clock for each PE. Third, 
OCU selects the proper permutation of the Twiddle and Address 
generators within each PE. Each input frame can consist of any 
number of points (16, 32, 64, 128 or 256). 
 
The OCU maintains a table consisting of five (5) entries. Each 
entry specifies the number of points in the frame that each of the 
five PEs (4 radix-4 and 1 radix-2) is currently processing. All  
entries in the table are updated each time the architecture is 
reconfigured. Using this information the OCU can assess 
whether: 

a) A PE is currently processing the last stage of the FFT 
for the respective frame. In this case it enables the 
corresponding multiplexer so that the output of the PE 
is directed to the bus, and out of the FFT architecture. 

b) A PE is currently processing an intermediate FFT 
computation stage. Thus its output is directed, using 
the corresponding multiplexer, to the following block 
or the radix-2 PE using the broadcast bus. 

c) A PE is not processing any valid data. This situation 
arises when all frames in the pipeline do not need to 
traverse all the PEs in order to complete the FFT 
computation. The PEs not performing butterfly 
operations can be disabled to conserve power. 

 
The pipeline OCU also has to provide a clock signal to each PE. 
The time interval (Ti) required for processing one frame (Fi) by 
one PE is fixed, irrespective to the number of points it consists 
of (Pi). Furthermore, the frame Fi takes Ti time to input or 
output the FFT architecture. Thus the clock frequency (f i) that is 
required to input, process or output the frame Fi is:  

i
i

i P
T

f ⋅= 1  

The OCU, using its internal table, is able to compute the clock 
frequency needed by each PE of the pipeline and distributes the 
clock signals. 

4. Power Consumption 
This section presents the performance of the FFT architecture 
described, with respect to the power dissipation of the 
architecture. Power saving can be accomplished by considering 
the features of the architecture and taking advantage of those 
that can be modified to provide lower power consumption 
features. The following paragraphs describe the techniques used 
in the architecture leading to power reduction. 
 
The first technique that can be incorporated is the neutralization 
of the non-processing PEs of the FFT architecture. Each time a 
new frame enters the architecture, an external signal informs the 
FFT control of the frame size. The number of points within each 
frame is 2n, 4≤n≤ 8. Table 1 shows that depending on the frame 
size there are PEs (at worst case one) that remain unused while 
still consuming power. The idle PEs can be deactivated 
resulting into lowering the power consumption.  
 
A second technique to improve on power consumption is to 
parallelize the functionality of multiplications and additions of 
the FFT calculations. It has been shown [4] that power 
dissipation is higher for architectures designed with low degrees 
of parallelism. The degree of spatial parallelism is defined as 
the number of data samples consumed and produced by a 
butterfly stage in one (1) execution cycle. The frequency is 
proportionally reduced by the number of the butterfly-
processing PEs incorporated by the architecture. The proposed 
architecture uses five (5) butterfly PEs and performs in the test 

implementation at a frequency of 100MHz .A single PE 
processing the same amount of data must perform at 
5*100MHz. Applying the analysis presented in [4], it follows 
that the power saving is 40%. 
  
In addition to the described techniques, there are several other 
ways of achieving power reduction. A different multiplication 
scheme can be applied to the complex multipliers of the FFT 
architecture, leading to further power consumption. It has been 
proven in [5] that instead of entering new data into the 
multiplier, for each multiplication, a transpose direct form 
structure can be utilized. In this manner each input data sample 
does not change value until it is multiplied by all coefficients. 
Since the switching activity at the multipliers inputs decreases 
significantly, it will follow a proportionally lower switching 
activity within the multiplier. Therefore, a considerable 
reduction in power dissipation is achieved. 

5. Parallelizing the memory 
access 

This section presents a memory/processor configuration that can 
reduce the number of clock cycles required to retrieve and store 
the FFT data from and to the memories. In the following we use 
a single processing element with two memory banks. The 
results can be extended to the case of k processors and 2k 
memory banks. 
 
In the following we will use the algebra developed by Parker in 
[8] and extended by Wold and Despain [7]. As shown in [8], the 
FFT network can be decomposed in a series of operators that 
describe how the interconnections should be designed. We will  
use a notation similar to that of [7]. We will prove that the 
proposed addressing produces a correct FFT algorithm and will  
conclude by describing how this transform can be implemented. 
 
Let N=2n be the number of points for a radix-2, DIT-FFT. Let 
the index of a data be defined as its coordinates on the input 

stream, ]][],[[],[ 11 yyxxyx vu
��= , with xi and yi the 

digits of x and y in binary notation. The one-dimensional input 
data stream is an array with indices from [0, 0] to [N-1, 0], 
where [0, 0] = x(0) and [N-1, 0] = x(N-1). We use an operator 
that can be described by its effect on the indices. This operator 
divides the input stream in blocks of 2k data and distinguishes 
the data within each block into 2j rows, so that each resulting 
column contains 2j-1 butterfly transformation pairs. In binary 
notation:  
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Where µµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµ  is defined if ukj ≤≤ . The operator 
)(kµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµ  rearranges 

the input stream into two rows, according to the kth bit of the x 
index of each data on the stream. As a consequence, the 

),( kjµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµ  

operator separates the input stream into 2j memory banks. The 

)(kµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµ  operator rearranges the input data in the correct order, as 

to perform the butterfly operations in the column pairs. The 
form of 1

)(
−
kµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµ  (reverse transform) can be deduced from the above 

definition. The butterfly calculations can be defined as an 
operator (B) that reads a two-dimensional array in columns and 
performs a DFT on the data pairs. The accurate definition of B 
is not essential, provided that the operator does not shuffle the 
resulting pairs.  



The structure of an FFT transform using the 
)(kµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµ  and B 

operators is ([8], [7]) 
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where the composition of the operators takes place as 

))(( 1221 xffxff = . From Eq. (2) we note that the ( ))1(
1
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operator forms the transformation that rearranges the data 
during two consecutive stages of the algorithm. 
 
If we map the two rows of this array onto two memory banks, 
then the indices of a transformation pair [xa, ya] and [xb, yb] are: 
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since, the two data are on the same column (x) and on a 
different row (y). The read operation can be performed 
concurrently. The write back operation, on the other hand 
cannot be performed in a single cycle, because both data will be 
competing for the same memory bank, due to the y index, which 
is equal to 

)1( −kax  for both a, b. 

Now, let 
)(kλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ  be the following operator: 
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where 
)(kλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ  is defined for 11 −≤≤ uk  and the symbol 

⊕ denotes the XOR operation. The operator is a permutation 

such that 1
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The write operation described by the product 
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Form) can be shown to resolve the memory congestion 
described above. Recall the form (1,2) of the addresses of an 
arbitrary pair during the kth step of the algorithm. Applying the 
above operators, we find that  
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and the resulting addresses will always differ at bit k-1, which is 
the bank where the data will be written on the next stage of the 
algorithm. This ensures that the data will always reside on 
different rows during memory write operation. 
 
The 3d form describes the implementation of the above scheme. 
After the completion of the write back operation on the kth stage 
of the FFT the indices of an element are 

[ ] [ ] ( )[ ][ ]112 ,, −− ⊕= kkkku xxxxxxyx 

  
The indices of a transformation pair differ only with respect to 
the y coordinate. Applying the inverse transformations 
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− k)(k)(k µµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµµ  does not affect the x  coordinate of a datum. 

Therefore the transformation pairs will reside on the same x  

coordinates and their y  coordinates will be inverted if the kx  

bit of their x  coordinate is equal to “1”.  This is equivalent to 
exchanging the butterfly inputs for those data pairs whose x -
coordinate has the 

kx  bit set (“1”). 

 
The permutation and addressing scheme described above is 

depicted in Figure 3, where ( ))1(1
1

1
1
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using a simple combinational circuit that calculates 

( )1−⊕ kk xx  on the write address of the (k-1)th stage of the 

FFT. Finally, the W-1 operator can be implemented using two 
multiplexers on the inputs of the butterfly processor that invert 

the inputs from the two banks with respect to the kx  bit of the 

address. 

6. Implementation on FPGAs and 
Concluding Remarks 

The validity and the efficiency of the design have been shown 
by mapping the architecture on the Xilinx and Altera Field 
Programmable Gate Arrays (FPGAs: Xilinx:Virtex II - 
XC2V2000-5BF957 and Altera: EP20K600EBC33-1X) and for 
demonstration purposes it has been integrated in a OFDM 
modem [13]. The resulting maximal frequency has been shown 
to be 103MHz and the FFT computations can have throughput 
as shown in Table 2: 
 
 
 
 
 
 

 

Figure 3: Parallel memory accesses 

 
 

FFT Length (Words) Sustained Throughput 
16 0.15 us 
32 0.31 us 
64 0.62 us 
128 1.24 us 
256 2.48 us 

Table 2: Sustained throughput for the supported FFT 
length 



 
Comparing to related results in the literature ([9], [11], [12], 
[15], [16], [17], [18], [19], [20], [21], [22], [23]) the proposed 
architecture achieves an enhanced throughput in FFT 
processing. Furthermore, it is reconfigurable at real time to 
accommodate lower transmitting rates if needed. The 
architecture has been designed to minimize the round-trip delay 
of the network and to include the power saving techniques of 
Section 4. As mentioned in section 3 each processing element 
uses word-serial access to its memory bank. If the technique in 
Section 5 is applied the throughput will increase by the number 
of parallel memory accesses. 
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