
Reconfigurable Fast Fourier Transform Architecture for
Orthogonal Frequency Division Multiplexing Systems

Konstantinos E. MANOLOPOULOS, Konstantinos G. NAKOS,

Dionysios I. REISIS and Nikolaos G. VLASSOPOULOS
Electronics Laboratory, Department of Physics
National and Capodistrian University of Athens

Physics Buildings IV & V, Panepistimiopolis, Athens, Greece – 15784
Email : dreisis@cc.uoa.gr

Abstract

The performance of the Fast Fourier Transform computation
plays a crucial role in the overall operation of OFDM modems.
A VLSI architecture realizing the FFT has to perform in real
time, adapt to various data rates and accommodate support for
power dissipation requirements. This paper presents a VLSI
architecture for real time FFT processing. The design involves
four (4) radix-4 and one (1) radix-2 processing elements with
complex multipliers and can be configured in real time to
accommodate FFT computations of length 16, 32, 64, 128 and
256. For further speeding up the entire algorithm, the design can
include a technique for parallel accessing the memory banks of
each processing element. The validity and the effi ciency of the
architecture have been shown by an example implementation on
FPGAs with throughput: each 256-length FFT at 2.48 usec.

1. Introduction
The spectral analysis of discrete signals plays an important role
both in Digital Signal Processing and in Telecommunication
Applications. The Fast Fourier Transform (FFT) Algorithm, as
introduced by Cooley and Tukey [1], is an important
improvement on the Discrete Fourier Transform (DFT)
Algorithm [2] due to the achievement of significantly lower
computational complexity. Among other technological
advancements, the FFT has enabled the development of real
time, high-speed applications, such as the Orthogonal
Frequency Division Multiplexing (OFDM) Modems [24], [25].
Lately, OFDM systems have been designed to sustain a
transmitting rate of 50 Mwords/sec [13].

The OFDM modems exploit the perpendicularity of the sinus
and co-sinus as means to generate and transmit a set of symbols
through the channel. This procedure requires real time Inverse
FFT and FFT processing during the modulation and
demodulation of the signal respectively. The performance
required by the FFT processing demands either a single
processor driven to a very high clock frequency (O(logN)
multiplied by the sampling frequency)[12], or alternatively the
implementation of an Application Specific Integrated Circuit
(ASIC) solution utilizing parallel processing and bit-pipelining
techniques[14]. Both solutions have to meet requirements that
are extremely demanding in terms of throughput and low power
consumption, especially when the applications involve mobile
communications and/or battery-powered systems. Moreover, the
need for variable data rate in OFDM modems imposes the
requirement for computations of various FFT sizes. To
accomplish this task, researchers are concerned with the issue of
reconfiguring the FFT architecture during subsequent frames (in
real time)[13]. In most cases, the solution of an off-the-shelf
high-speed processor is shown to be inadequate with respect to

the variations of the processing speed requirements and power
consumption ([15], [16], [17], [18], [19], [20], [21], [22], [23]).

This paper presents a FFT architecture with four (4) radix-4
processing elements and one (1) radix-2 processing element.
Each processing element includes a complex multiplier and uses
a word-serial access to each processing element’s memory.
Each processing element realizes an FFT stage. The radix-4
computation has been chosen because of the requirement of
minimizing the round-trip delay of frames in the
telecommunication systems using OFDM [13]. The proposed
FFT architecture can be configured in real time, in order to
perform computations of 16, 32, 64, 128 or 256 points. Also,
this paper considers a technique for word parallel accesses to
the memory banks of each processing element, which if it is
applied, it will improve further the performance of each
application.

The FFT architecture can sustain a throughput equal to the
length of the FFT (N words) multiplied by the register access
time provided by the VLSI technology. An example
implementation on Xi linx or Altera Field Programmable Gate
Arrays (FPGAs) results in a throughput of 256-points FFT at
2.48 us This result provides an enhanced throughput comparing
to the results in the literature [9], [11], [12], [15], [16], [17],
[18], [19], [20], [21], [22], [23]. This performance can be
further improved by parallelizing the access to the memory, as
mentioned above. Moreover, the design is power efficient by
using the lowest possible frequency and the minimal subset of
processing elements and memory blocks to accomplish the FFT
computations.

The paper is organized as follows: The following section
presents the problem definition, including relevant work
regarding FFT architectures. Section 3 describes the proposed
FFT architecture, including the organization of the main blocks
and the interconnection between them, the memory
management and the overall control unit. Section 4 analyzes the
power consumption of the FFT architecture and adapts
techniques for power dissipation reduction. Section 5 describes
an effi cient technique for parallelizing the access to the memory
banks of the FFT architecture to enhance the memory to each
processing element throughput. Finally, Section 6 concludes the
paper.

2. Problem Definition
This Section presents the FFT computation and its application in
OFDM systems and related results with respect to the FFT
performance.

The FFT in OFDM systems: The OFDM requires a modulation
of the 2N points (the 2N points form a symbol) using an IFFT
calculation at the transmitter side (Tx). The corresponding

demodulation at the receiver side (Rx) involves an FFT
calculation of the 2N words of the symbol.

As shown in [1] the Decimation In Time FFT (DIT FFT) X[k]
of a sequence x[n] is computed by successively decomposing
the input signal in odd and even samples and recursively
applying the DFT algorithm to the resulting sequences. This can
be illustrated as follows:

∑∑

∑∑∑

==

=

+

==

++=

⇔++=⇔=

2

1

2
2

1

2

2

1

)12(
2

1

2

1

]12[]2[][

]12[]2[][][][

N

i

ik
N

k
N

N

i

ik
N

N

i

ik
N

N

i

ik
N

N

i

ki
N

WixWWixkX

WixWixkXWixkX

where:)/2exp(NjWN πππ−= . Exploiting the inherent

symmetry of the twiddle factors and recursively applying the
above formula, we obtain the elementary “butterfly” operation
used in the calculation of the FFT.

The FFT length and the throughput depend on the OFDM
application. Another aspect related to OFDM systems is the
variation of the size of the FFT due to variable bit rates. The
modem changes the combination of these two parameters
dynamically. The principles behind the decisions for varying the
parameters are different among OFDM modems. For example,
the bit rate should be lowered when the channel conditions
deteriorate during a link-up, or increased when channel
conditions are better. Also various modem applications impose
limits on the power consumption. For instance, mobile
transceivers require both variable bit rates and low power
operation.

Therefore, the most efficient solution is to process the data at
the transmitting (receiving) rate. This implies that the
architecture should be organized in a parallel mode and it
introduces latency in FFT lengths proportional to the number of
processing elements. This latency constitutes an additional
design problem that should be addressed. More specifically
another issue regarding the FFT implementation in OFDM
modems is the round-trip delay of symbols. This delay has to be
kept minimal, a fact that leads to solutions of processing
elements with radix computation higher than 2.

Related Work: The Fast Fourier Transform (FFT) has been
presented in [1] and details of design and applications can be
found in [2]. A variety of VLSI architectures is presented in [3]
optimized with respect to the AT2 bound ((Area
complexity)*(Time complexity)2). [4] Refers to the power
dissipation and complexity of a pipelined parallel FFT
architecture, showing that parallelizing the processing units
results in a significant reduction of the power consumption. A
different multiplication scheme is presented in [5], applied to a
single multiplier CMOS based DSP processors, in order to
implement a low-power FIR filt er. The multiplier can be used
with slight alterations to perform the multiplications in the FFT
algorithm as well. [10] Presents the problem of power
estimation in VLSI architectures. It also introduces probabilistic
techniques to estimate power dissipation and presents a survey
on several power estimation techniques. [6] Presents how the
perfect shuffle interconnection pattern can be used in order to
perform FFT transforms. Several methods for performing FFT
computations are presented in [7]. A variety of algorithms for
pipeline and parallel

Number of points in data
frame

Radix-4 Stages needed

16 2
32 2

64 3
128 3
256 4

Table 1: PE utilization for different lengths of frames

pipeline processors are examined, with respect to VLSI
implementation. [8] Presents among others a set of algebraic
tools
that can be used to describe processor networks in terms of their
patterns of connections. A radix-22 algorithm is presented in [9],
which combines the radix-2 butterfly structure and the radix-4
multiplicative complexity. A low-power FFT architecture is
presented in [11]. Asynchronous circuit design and multirate
signal processing are combined in order to produce a globally
shared result algorithm. [12] Presents a DSP architecture for
high-speed FFT transforms proposing a different flow of the
computations for the butterfly operations. [13] Presents an
OFDM modem and the benefits of architecture flexibility,
adaptability and reconfigurability.

This paper presents a parallel FFT architecture, which is
reconfigurable with respect to the size of the FFT problem, the
clock speed of execution and the number of memory modules
used at each stage. The architecture is optimized for use in
Orthogonal Frequency Division Multiplexing Modems
(OFDM). It has incorporated several features of the above
designs while it introduces reconfiguration of a high-speed
architecture along with a variable number of memory modules.
It also considers the power efficiency of the FFT architecture.
The architecture’s description follows in the next Section.

3. Architecture
This Section describes the overall architecture and the details of
the individual blocks, namely the processing elements, the
interconnection and the control. The FFT-architecture performs
FFT or IFFT computation of 2n points, 4≤n≤8. This is
accomplished by implementing split radix decimation in
frequency (DIF) algorithm. The collection of the 2n data words
are regarded as one frame of data which, for the specific
application in OFDM modems, correspond to the length of one
OFDM symbol.

The FFT architecture consists of five (5) Processing Elements
(PEs): Four (4) radix-4 PEs and one (1) radix-2 PE, as shown in
Figure 1. Each PE performs a single stage of the FFT
computation within the time required to input one data frame.
The FFT architecture can be configured in real time, in order to
perform FFT computations of 16, 32, 64, 128 or 256 points.
These computations require a subset of four (4) radix-4 PEs plus
optionally one (1) radix-2 PE depending on the number of the
FFT points, as shown in Table 1.

The FFT architecture has been designed to process consecutive
frames of either the same or different lengths. An external
arbiter must signal a change in the frame size to the architecture.

Figure 1: FFT organization

3.1 Processing Element Description
This section describes the functionality of the blocks that
support each processing element (PE). The following
paragraphs define the interfaces of the blocks within the PEs, as
well as the interfaces among the PEs.

Radix-4
A radix-4 processing element performs one stage of radix-4
butterfly computations to the data. Each radix-4 PE consists of
the following blocks (refer to Figure 2):

RAM: This block is used to store the input data to the
processing element. The preceding butterfly stage supplies the
write addresses to the radix-4 PE. The read addresses are
generated within the radix-4 PE (as described below). The
memory block is organized internally with two memory banks.
Each bank can store one (1) frame of data. The first bank can be
considered as the working bank for the FFT core. The second
bank is used to store the incoming input data. The two memory
banks switch roles at the beginning of each incoming frame.

Address Generators: There are two address generators. The first
is used for supplying read addresses to the RAM block internal
to the PE. The second is used for supplying write addresses for
the data that exit the PE. The addressing scheme is the same for
both Address Generators. Each radix-4 PE uses a distinct
addressing scheme depending on the FFT stage realized by the
PE.

Twiddle (W) Generator: A Look-Up-Table (LUT) contains the
max(N) roots of unity, where max(N) is the maximum size of
FFT that is supported by the architecture (256). The Twiddle
Address Generator is a simple N-counter-based architecture. At
each data cycle the Twiddle Generator fetches the appropriate
twiddle factor.

Butterfly Core: This block performs the radix-4 FFT butterfly
computation. The N input data are read sequentially from the
RAM block. Each set of four consecutive input data forms the
input to each radix-4 calculation. The corresponding twiddle
factors are also fetched from the Twiddle Generator. Four (4)
complex accumulators are used to process the input data in
parallel. Each accumulator-process involves the add-subtract of
the four data, as these operations are defined by the radix-4 data
flow. A single complex multiplier unit operates on the four (4)
accumulated results and the twiddle factors in a pipeline
fashion. The resulting data are written sequentially to the RAM
block of the following (FFT) PE.

Figure 2: Radix-4 & Radix-2 processing element internal
units

Each radix-4 processing element in the reconfigurable FFT
pipeline has to be provided the length of the data frame it is
processing by the Overall Control Unit (OCU). With this
information the addressing scheme used by the address
generator block and the twiddle factor generator block is
changed. This is accomplished by selecting the proper
permutation of the binary counter that all three generator blocks
realize.

Radix-2
The radix-2 PE applies one stage of radix-2 butterfly
computations to its data. It is used when the size of the frame to
be processed is 32 or 128 points. The radix-2 PE is realized as a
simplified radix-4 PE (Figure 2). The Butterfly Core is replaced
with the simpler radix-2 butterfly network, consisting of two (2)
complex adders/subtractors and one (1) complex multiplier.
This circuit though is optimized further. In the split radix 128
and 32 point FFT computation, the twiddle factors for all radix-
2 butterflies have the constant value of (1+0j). Plugging into the
radix-2 butterfly equations we obtain:





−=
+=

⇒




⋅−=
⋅+= =

BAB

BAA

WBAB

WBAA W

'

'

'

' 1

Consequently, the complex multiplier (in the butterfly core) and
the twiddle generator blocks are omitted.

3.2 Interconnection
The architecture performs FFT or IFFT computation by
implementing split radix decimation in frequency (DIF)
algorithm. The pipeline consists of four (4) consecutive radix-4
PEs and a single PE of radix-2. The input to the FFT is always
directed to the first radix-4 PE of the pipeline. With the use of a
broadcast bus the address and data output of each PE can be
diverted to the bus or to the following PE using
multiplexers/demultiplexers (In our implementation we have
been using broadcast lines). The bus is used in two ways. First,
for data that do not need to be processed by all PEs of the
pipeline and the bus performs as a bypass to the exit of the FFT
architecture. Second, it is used for processing the split-radix
cases of frame lengths, namely the 32 and 128 point, in which
case output from any previous PE (radix-4) in the pipeline can
be diverted to the input of the radix-2 PE for processing. The
output from the last PE (radix-2) is stored into a RAM block. It
consists of two banks of memories and utilizes the bank
switching mechanism described above. In this block, data are
buffered in order to perform the bit-reversal permutation.

An additional external input signal specifies the beginning of a
data frame. This signal is propagated to each successive PE of
the pipeline, and allows proper bank switching functionality.
The architecture provides this signal as an output to mark the
start of a data frame at the output.

Input Output

R
adix-4

R
adix-4

R
adix-4

R
adix-2

= Demultiplexer (before Radix-2 block, it is also a multiplexer)

Overall Control Unit

R
adix-4

Read
Address

Twiddles

Write
Address

Butterfly

RAM

Address
In

Data In
Data Out

Address
Out

3.3 Overall Control Unit
The pipeline Overall Control Unit (OCU) has to provide signals
that control: first each multiplexer’s select port for output on the
broadcast bus. Second, it supplies the clock for each PE. Third,
OCU selects the proper permutation of the Twiddle and Address
generators within each PE. Each input frame can consist of any
number of points (16, 32, 64, 128 or 256).

The OCU maintains a table consisting of five (5) entries. Each
entry specifies the number of points in the frame that each of the
five PEs (4 radix-4 and 1 radix-2) is currently processing. All
entries in the table are updated each time the architecture is
reconfigured. Using this information the OCU can assess
whether:

a) A PE is currently processing the last stage of the FFT
for the respective frame. In this case it enables the
corresponding multiplexer so that the output of the PE
is directed to the bus, and out of the FFT architecture.

b) A PE is currently processing an intermediate FFT
computation stage. Thus its output is directed, using
the corresponding multiplexer, to the following block
or the radix-2 PE using the broadcast bus.

c) A PE is not processing any valid data. This situation
arises when all frames in the pipeline do not need to
traverse all the PEs in order to complete the FFT
computation. The PEs not performing butterfly
operations can be disabled to conserve power.

The pipeline OCU also has to provide a clock signal to each PE.
The time interval (Ti) required for processing one frame (Fi) by
one PE is fixed, irrespective to the number of points it consists
of (Pi). Furthermore, the frame Fi takes Ti time to input or
output the FFT architecture. Thus the clock frequency (f i) that is
required to input, process or output the frame Fi is:

i
i

i P
T

f ⋅= 1

The OCU, using its internal table, is able to compute the clock
frequency needed by each PE of the pipeline and distributes the
clock signals.

4. Power Consumption
This section presents the performance of the FFT architecture
described, with respect to the power dissipation of the
architecture. Power saving can be accomplished by considering
the features of the architecture and taking advantage of those
that can be modified to provide lower power consumption
features. The following paragraphs describe the techniques used
in the architecture leading to power reduction.

The first technique that can be incorporated is the neutralization
of the non-processing PEs of the FFT architecture. Each time a
new frame enters the architecture, an external signal informs the
FFT control of the frame size. The number of points within each
frame is 2n, 4≤n≤ 8. Table 1 shows that depending on the frame
size there are PEs (at worst case one) that remain unused while
still consuming power. The idle PEs can be deactivated
resulting into lowering the power consumption.

A second technique to improve on power consumption is to
parallelize the functionality of multiplications and additions of
the FFT calculations. It has been shown [4] that power
dissipation is higher for architectures designed with low degrees
of parallelism. The degree of spatial parallelism is defined as
the number of data samples consumed and produced by a
butterfly stage in one (1) execution cycle. The frequency is
proportionally reduced by the number of the butterfly-
processing PEs incorporated by the architecture. The proposed
architecture uses five (5) butterfly PEs and performs in the test

implementation at a frequency of 100MHz .A single PE
processing the same amount of data must perform at
5*100MHz. Applying the analysis presented in [4], it follows
that the power saving is 40%.

In addition to the described techniques, there are several other
ways of achieving power reduction. A different multiplication
scheme can be applied to the complex multipliers of the FFT
architecture, leading to further power consumption. It has been
proven in [5] that instead of entering new data into the
multiplier, for each multiplication, a transpose direct form
structure can be utilized. In this manner each input data sample
does not change value until it is multiplied by all coefficients.
Since the switching activity at the multipliers inputs decreases
significantly, it will follow a proportionally lower switching
activity within the multiplier. Therefore, a considerable
reduction in power dissipation is achieved.

5. Parallelizing the memory
access

This section presents a memory/processor configuration that can
reduce the number of clock cycles required to retrieve and store
the FFT data from and to the memories. In the following we use
a single processing element with two memory banks. The
results can be extended to the case of k processors and 2k
memory banks.

In the following we will use the algebra developed by Parker in
[8] and extended by Wold and Despain [7]. As shown in [8], the
FFT network can be decomposed in a series of operators that
describe how the interconnections should be designed. We will
use a notation similar to that of [7]. We will prove that the
proposed addressing produces a correct FFT algorithm and will
conclude by describing how this transform can be implemented.

Let N=2n be the number of points for a radix-2, DIT-FFT. Let
the index of a data be defined as its coordinates on the input

stream,]][],[[],[11 yyxxyx vu
��= , with xi and yi the

digits of x and y in binary notation. The one-dimensional input
data stream is an array with indices from [0, 0] to [N-1, 0],
where [0, 0] = x(0) and [N-1, 0] = x(N-1). We use an operator
that can be described by its effect on the indices. This operator
divides the input stream in blocks of 2k data and distinguishes
the data within each block into 2j rows, so that each resulting
column contains 2j-1 butterfly transformation pairs. In binary
notation:

)1(]][],[[

]][],[[],[

),()(

1111

11),(),(









=

=

==

+−−+

kjk

jkkvjkku

vukjkj

xxyyxxxx

yyxxyx

µµ

µµ
����

��

Where µµµ is defined if ukj ≤≤ . The operator
)(kµµ rearranges

the input stream into two rows, according to the kth bit of the x
index of each data on the stream. As a consequence, the

),(kjµµµ

operator separates the input stream into 2j memory banks. The

)(kµµµ operator rearranges the input data in the correct order, as

to perform the butterfly operations in the column pairs. The
form of 1

)(
−
kµµµ (reverse transform) can be deduced from the above

definition. The butterfly calculations can be defined as an
operator (B) that reads a two-dimensional array in columns and
performs a DFT on the data pairs. The accurate definition of B
is not essential, provided that the operator does not shuffle the
resulting pairs.

The structure of an FFT transform using the
)(kµµ and B

operators is ([8], [7])

)2(1
)1()1(

1
)1()1(

1
)()(

−−
−−

−= µµ BBBFFT nnnn
�

where the composition of the operators takes place as

))((1221 xffxff = . From Eq. (2) we note that the ())1(
1
)(−

−
kk µµ

operator forms the transformation that rearranges the data
during two consecutive stages of the algorithm.

If we map the two rows of this array onto two memory banks,
then the indices of a transformation pair [xa, ya] and [xb, yb] are:

[] [] [][])()1()1()1()(,, kaakakauaaa xxxxxyx ��

−+=

[] [] [][]
[] [][])()1()1()1()(

)()1()1()1()(

,

,,

kaakakaua

kbbkbkbubbb

xxxxx

xxxxxyx

��

��

−+

−+

=

==

since, the two data are on the same column (x) and on a
different row (y). The read operation can be performed
concurrently. The write back operation, on the other hand
cannot be performed in a single cycle, because both data will be
competing for the same memory bank, due to the y index, which
is equal to

)1(−kax for both a, b.

Now, let
)(kλλ be the following operator:

()[]1111)(][xxxxxxx kkkkuk
��

−++ ⊕=λλ

where
)(kλλ is defined for 11 −≤≤ uk and the symbol

⊕ denotes the XOR operation. The operator is a permutation

such that 1
)()(

−= kk λλ and Ikk =−1
)()(λλ , I being the unity

operator. Using the identity Ikk =−1
)()(µµ Eq. (2) can be

rewritten as:

()() ()

()() () Form) (3

Form) (2

Form)(1

rd1
)1()1(')1(

1
)1(

Operation
Read

11
1

1

Operation
Write

)1()1(
1
)()('

nd1
)1()1()1(

Operation
Read

)1()1(

Operation
Write

)1(
1
)()(

st 1
)1()1(')1()1(')1()1(

1
)()('

−−
−−

−
−−−

−

−
−−−

−

−
−−−

−

=
==

µµλλλµµλλλµµ

µµλλλµµµλλµµ
µµλλλµµµλλµµ

BB

BB

BBFFT

)'(n)(n)(nnnnn

nnnnn

nnnnn

�

�� ��� 	
�� ��� 	

�

� �� 	
� �� 	

�

The write operation described by the product

)('
1

)1(kk λλµµ −
+

 (2nd

Form) can be shown to resolve the memory congestion
described above. Recall the form (1,2) of the addresses of an
arbitrary pair during the kth step of the algorithm. Applying the
above operators, we find that

[] ()[])1()2()1()()()1()(akakakakakauaa xxxxxxxx ��

−−+ ⊕=′

[] ()[])1()2()1()()()1()(akakakakakauab xxxxxxxx ��

−−+ ⊕=′

and the resulting addresses will always differ at bit k-1, which is
the bank where the data will be written on the next stage of the
algorithm. This ensures that the data will always reside on
different rows during memory write operation.

The 3d form describes the implementation of the above scheme.
After the completion of the write back operation on the kth stage
of the FFT the indices of an element are

[] [] ()[][]112 ,, −− ⊕= kkkku xxxxxxyx

The indices of a transformation pair differ only with respect to
the y coordinate. Applying the inverse transformations
())1(1

1
1 −−

−
− k)(k)(k µµ does not affect the x coordinate of a datum.

Therefore the transformation pairs will reside on the same x

coordinates and their y coordinates will be inverted if the kx

bit of their x coordinate is equal to “1”. This is equivalent to
exchanging the butterfly inputs for those data pairs whose x -
coordinate has the

kx bit set (“1”).

The permutation and addressing scheme described above is

depicted in Figure 3, where ())1(1
1

1
1

−−
−

−
− = k)(k)(kW µµ and

())1()1(
1
)(−−

−= nnnW µµλλµµ . The W operator can be implemented

using a simple combinational circuit that calculates

()1−⊕ kk xx on the write address of the (k-1)th stage of the

FFT. Finally, the W-1 operator can be implemented using two
multiplexers on the inputs of the butterfly processor that invert

the inputs from the two banks with respect to the kx bit of the

address.

6. Implementation on FPGAs and
Concluding Remarks

The validity and the efficiency of the design have been shown
by mapping the architecture on the Xilinx and Altera Field
Programmable Gate Arrays (FPGAs: Xilinx:Virtex II -
XC2V2000-5BF957 and Altera: EP20K600EBC33-1X) and for
demonstration purposes it has been integrated in a OFDM
modem [13]. The resulting maximal frequency has been shown
to be 103MHz and the FFT computations can have throughput
as shown in Table 2:

Figure 3: Parallel memory accesses

FFT Length (Words) Sustained Throughput
16 0.15 us
32 0.31 us
64 0.62 us
128 1.24 us
256 2.48 us

Table 2: Sustained throughput for the supported FFT
length

Comparing to related results in the literature ([9], [11], [12],
[15], [16], [17], [18], [19], [20], [21], [22], [23]) the proposed
architecture achieves an enhanced throughput in FFT
processing. Furthermore, it is reconfigurable at real time to
accommodate lower transmitting rates if needed. The
architecture has been designed to minimize the round-trip delay
of the network and to include the power saving techniques of
Section 4. As mentioned in section 3 each processing element
uses word-serial access to its memory bank. If the technique in
Section 5 is applied the throughput will increase by the number
of parallel memory accesses.

References
[1] J.W Cooley and J.W Tukey ‘An algorithm for the machine
calculation of complex Fourier series’
[2] A.V.Oppenheim and R.W Schafer. ‘Digital Signal
Processing’, Prentice Hall 1975
[3] Clark D. Thompson ‘Fourier Transform in VLSI’, IEEE
Transactions on Computers, 1973.
[4] Hong, Kim, Papaefthymiou, Stark ‘Power Complexity
Analysis of Pipelined VLSI FFT Architectures for Low Energy
Wireless Communication Applications’,
[5] A.T. Erdogan and T. Arslan ‘Low power multiplication
scheme for FIR fliter implementation in single multiplier
CMOS DSP processors’, Electronic Letters, vol. 32, 1996.
[6] H. D. Stone ‘Parallel Processing with the Perfect Shuffle.’,
IEEE Transactions on Computers, vol. C-20, no.2, 1971.
[7] E.H. Wold and A.M. Despain. ‘Pipeline and Parallel FFT
Processors for VLSI Implementations’, IEEE Transactions on
Computers, vol. C-33, 1984.
[8] D. Stott Parker ‘Notes on Shuffle/Exchange-Type Switching
Networks.’, IEEE Transactions on Computers, 1980
[9] S. He and M. Torkelson ‘A New Approach to Pipeline FFT
Processor.’, Proceedings of the IPPS, 1996.
[10] Farid. N. Najm ‘A Survey of Power Estimation in VLSI
Circuits’, IEEE Transaction on VLSI, 1994.
[11] Bruce W. Suter ‘A Low Power, High Performance
Approach for Time-Frequency/Time-Scale Computations’
[12] J. Lee, J. Lee, M. H.Sunwoo, S. Moh and S. Oh ‘A DSP
Architecture for High-Speed FFT in OFDM Systems’, ETRI
Journal, 2002
[13] I. Saarinen, G. Coppola, A. Polydoros, J.L. Garcia, M.
Lobeira, P. Dallas, M. Gertou, R. Cusani and G. Razzano. ‘High
Bit Rate Adaptive WIND-FLEX Modem Architectures for
Wireless Ad-Hoc Networking in Indoor Environments’
[14] S. He and M. Torkelson ‘Design and Implementation of a
1024-point Pipeline FFT Processor’, IEEE 1998 Custom
Integrated Circuits.
[15] AMPHION Data Sheet ‘High Performance 256 Point FFT
Core’ http://www.quicklogic.com
[16] AMPHION Data Sheet ‘High Performance 64-Point
FFT/IFFT FFT64HPS’
http://www.quicklogic.com
[17] Xili nx Reference Design ‘High Performance 16-Point
Complex FFT’
http://www.xilinx.com/ipcenter
[18] NewLogic Technologies AG Data Sheet ‘Fast 64-points
FFT / IFFT (IP core)’
http://www.newlogic.com
[19] Sacet Data Sheet ‘64/256-Point Complex FFT/IFFT’
http://www.sacet.com
[20] TMS320C62xx User’s Manual, Texas Instruments Inc.,
Dallas, TX, 1997
[21] SC140 DSP Core Reference Manual, Motorola
Semiconductors Inc., Denver, CO, 2000
[22] DSP16210 Digital Signal Processor Data Sheet, Lucent
Technologies Inc., Alletown, PA, 2000

[23] Philips Semiconductors Inc. “Philips Semiconductors’
R.E.A.L DSP Core for Low-Cost Low-Power
Telecommunication and Consumer Application,” Technical
Backgrounder From Philips Semiconductors, Sept. 1998
http://www.us-3.semiconductors.com
[24] K. Sam Shanmugam, ‘Digital and Analog
Communication Systems’, John Wiley & Sons Inc. 1979
[25] John A. C. Bingham ‘Mul ticarrier Modulation for Data
Transmission: An Idea Whose Time Has Come’, IEEE
Communications Magazine, 1990.

